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Nomenclature

Introduction
Examples of upwash jet flow arising from the interaction of opposing plane jets
can be found in high lift aerodynamics and other industrial flows for intense
turbulence mixing. Besides these practical applications, the interaction of two
turbulent jets is also an important flow of academic interest. Among many
flows related to multiple jet interactions, the present work focuses on the
computation of an upwash jet arising from the two opposing plane wall jets.
The flow configuration is schematically shown in Figure 1. The flow has been
studied experimentally by several investigators (Gilbert, 1988; Kind and
Suthanthiran, 1973; Saripalli, 1985). A very similar flow concerning the
interaction of the two opposing curved wall jets has also been studied
intensively (Rew and Park, 1988; Park and Rew, 1991). The merged free jet
issuing out of the complex interaction zone is known to have similar
characteristics with the single, plane turbulent jet. For example, the non-
dimensionalized velocity profiles in the self-preserving region are the same for
the two flows. Major differences between the two flows, however, lie in the
spreading rate and the velocity decay characteristic. It was observed
experimentally that the spreading rate of the upwash jet was very much greater
than the single, turbulent plane jet. Two colliding plane wall jets produced an
upwash jet having the spreading rate of about 0.2 (Gilbert, 1988), while the

B = jet half width
Ci = turbulence model coefficient
Dij = diffusion term of the Reynolds stress
Dw = height of jet nozzle
G = production rate of turbulent kinetic energy
k = turbulent kinetic energy
Pij = production term of the Reynolds stress
Φij = pressure-strain correlation term of the

Reynolds stress
U, V = mean velocity
u, v = fluctuating velocity

ui
—uj = Reynolds stress

Re = Reynolds number
x, y = cartesian co-ordinate
νt = turbulent eddy viscosity
ε = dissipation of the turbulent kinetic energy

Subscripts
i,j,k = tensor
j = jet
w = wall
m = maximum
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spreading rate of an ordinary plane jet is about 0.09. Two opposing curved wall
jets were reported to produce the outwash jet having the spreading rate of 0.15
(Park and Rew, 1991). It was supposed that the high spreading rate was caused
either by intense turbulent diffusion due to very high turbulence level resulting
from the collision of the two opposing jets or by unsteady oscillatory behavior
of the flow. As shown by Haung and MacInnes (1988) and will be shown in this
work, the steady computation utilizing various turbulence models fails to
predict the large spreading rate. This suggests that the large spreading rate of
the upwash jet is associated with a quasi-periodic unsteadiness of the flow.
Evidence to support the unsteady feature of the upwash jet is given in Figure 2.
Since the time series of velocity fluctuations for the present flow configuration
is not available, we present here the data for the case of the two opposing curved
wall jet interaction. Figure 2 illustrates the power spectrum of the axial velocity
fluctuation taken at a downstream position (roughly 15 times the wall jet slot
height from the cylindrical surface and about 0.4 times the jet half width from
the jet centerline) of the outwash jet arising from two symmetric curved wall
jets investigated experimentally in our previous works (Rew and Park, 1988;
Park and Rew, 1991). We realize that the low frequency oscillations are
evidently present in this flow. It is believed that the unsteady nature of the
upwash jet from the two plane wall jets should be qualitatively similar to the
upwash jet from the two curved wall jets depicted in Figure 2, inferring a
similar flow configuration.

As mentioned briefly, the present work discusses the computation of an
upwash jet ensuing from two opposing plane wall jets and is an extended study
of our earlier presentation (Cho and Park, 1995). The target flow is the one
studied experimentally by Gilbert (1988). For the steady computation, the flow
field was obtained by integrating the steady version of the Reynolds averaged
Navier-Stokes equations employing various turbulence closures. We chose the
various k-e eddy viscosity models and the Reynolds stress transport model.
When the Reynolds stress transport model was adopted, several different
diffusion term models were tried to investigate the effect of the diffusion term on

Figure 1.
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the flow prediction. The steady flow was computed by enforcing the symmetry
condition at the geometric symmetry plane.

In the unsteady computation, an oscillatory behavior of the merged upwash
jet was assumed and hence the unsteady solution to account for the oscillatory
behavior was sought. An unsteady version of the standard k-e eddy viscosity
model was used. The computation was performed for the full domain without
imposing the symmetry condition to account for the unsteady behavior.

Numerical details
Governing equations and numerical method
We consider the flow to be two-dimensional, incompressible and turbulent. The
governing equations are:

(1)

(2)

To integrate the equations above and the turbulent model equations, to be
described later, we developed an incompressible Navier-Stokes solver based on
the code developed by Chen (1986). The Chen’s code (CNS3D) was based on the
hybrid scheme and the k-e turbulence model. We essentially rewrote the code to
accommodate the Reynolds stress transport model, the consistent quick

Figure 2.
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formulation (Hayase et al., 1992) for the convection term, and the unsteady term.
The governing equations were discretized by a finite volume method on a
staggered grid system. The consistent quick scheme (Hayase et al., 1992),
known to be very robust among various formulations of the quick scheme, was
applied for the momentum equations. The turbulent model equations, however,
were discretized by the hybrid scheme instead of the quick, because the quick
scheme has a tendency to provoke oscillations in regions of steep property
variations (Lien and Leschziner, 1994). It is widely accepted that the turbulence
model quantities depends strongly on the source term and hence the
discretization of the convection term is less critical. The simple-c procedure
(Van Doormaal and Raithby, 1984) was adopted for the iteration to get the
velocity and pressure. For the unsteady term, the fully implicit first order
discretization in time was employed. The new code was validated against
several benchmark flows such as driven cavity flow prior to the present
computational work.

Turbulence models
The k-e eddy viscosity model, proposed by Launder and Spalding(1974),
assumes the following stress-strain relation:

(3)

where νt is the turbulent eddy viscosity determined from the turbulence
energy(k) and its dissipation rate(ε) which obey following transport equations:

(4)

(5)

where, (6)

(7)

The model constants appearing in the equations above are:

(8)

We also tested the RNG k-e model (Yakhot et al., 1992) and the Bardina’s (1988)
model to examine the effects of the mean strain rate and mean rotation on the
turbulent diffusion. The RNG k-e equations are of the same form as the
standard k-e equations, but assume the different model coefficients evaluated by
the renormalization group theory. The RNG k-e model by Yakhot et al. (1992)
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uses the model coefficients which vary with the ratio of the turbulent to the
mean strain time scale, η, as described below:

(9)

where,

(10)

Bardina (1988) modified the ε equation in order to account for the effects of mean
rotation on the production and removal of the turbulent energy dissipation rate.
Bardina’s model is represented by the following model coefficients:

(11)

where

(12)

The Reynolds stress transport model consists of a closed set of transport
equations for the Reynolds stress ui

—uj. The model equations may be written
symbolically as,

(13)

Gij, Dij, Φij, εij are, respectively, the generation, the diffusion, the pressure-strain
correlation, and the dissipation term. We adopted the pressure-strain model
suggested by Speziale et al. (1991) and Sarkar and Speziale (1990). The return-
to-isotropy term (Φij,1) and the rapid pressure-strain term (Φij,2) given as below
comprise the pressure-strain model.

(14)

(15)

(16)

where,
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(17)

Sij and Ωij are the same as given in equations (11) and (12).
The three diffusion models proposed respectively by Daly and Harlow (1970)

(DH), Hanjalic and Launder (1972) (HL) and Mellor and Herring (1973) (MH)
were selected to scrutinize the effect of the diffusion term on the spreading rate.
These models are given respectively as:

(18)

(19)

(20)

These models are essentially gradient diffusion models focusing mainly on the
turbulent diffusion due to the triple moments of velocity fluctuations. To model
the pressure diffusion additionally by large scale turbulence, Kim and Chung
(1994) (KC) proposed the following pressure-velocity diffusion model based on
the concept of convection velocity, which we add to the HL model:

(21)

where

(22)

For the ε equation, we selected the model of Launder et al. (1975). The diffusion
term in the ε equation was remodeled in the following form to explicitly include
the Reynolds stress:

(23)

(24)

(25)
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Boundary conditions and convergence criteria
As shown in Figure 1, the jet nozzle height (Dw) was 1cm and the nozzle to
nozzle distance was 84cm. The jet exit velocity was set to 67m/s. The Reynolds
number based on the jet exit velocity and jet nozzle height was 4.68 × 104.

The steady upwash jet flow can be computed by enforcing the symmetry
condition at the geometric symmetry plane. This halves the computational
domain as shown in Figure 3. Inlet velocity profile was specified to be uniform
and the inlet turbulence energy k was given from the experimental values
(Gilbert, 1988). Along the entrainment and the outflow boundaries, constant
static pressure was assumed and the gradient of tangential velocity was set to be
zero. The velocity normal to the boundary was then calculated from the
continuity equation. Zhu (1992) and Laschefski et al. (1994) adopted these
boundary conditions in their computations of the impinging jet flow and the
radial jet reattachment flow respectively. The wall function method was
employed on the base surface to impose the wall boundary condition. The
boundary value of the Reynolds stress was obtained from the wall shear stress
as given in Launder et al. (1975) The use of wall function, when the solution
obtained by using the wall function and the one with the near wall low Reynolds
number model were compared, was found not to influence the upwash jet flow.

The unsteady computation for an oscillatory upwash jet was performed for
the full domain without imposing symmetry condition. While the wall and the
entrainment boundary conditions were specified the same as in the steady
computation, the outflow boundary condition was specified as given below.

(26)

Figure 3.
Computational domain
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C is the representative convection velocity at the outflow boundary and n is the
normal co-ordinate to the boundary. Physically equation (26) implies the
convection of frozen vector field with a convection velocity C. The boundary
condition, often called the Sommerfeld radiation condition, was first proposed
by Orlanski (1976) mainly for hyperbolic flows, and was applied to various
incompressible flows (Kobayashi et al., 1994; Pauley, 1994). It was pointed out
by Sani and Gresho (1994) that the quality of result was somewhat dependent
on the choice of C in the transient problem, and the average normal velocity
through the outflow boundary is a reasonable candidate for C for the duct flow
and the boundary layer flow. Because the present computational domain is not
confined with end walls, it is ambiguous to specify the convection velocity C as
the average normal velocity. After several trials, we found that evaluation of C
by the extrapolation from the interior node values is an adequate choice.

The steady solution was assumed to be converged when the sum of the
dimensionless residuals of the velocity and the pressure was less than 1 × 10–5.
In the case of the unsteady computation, the dimensionless time step, ∆t—Dw/Uj 

, of
200 was used. At each time step, the same convergence criteria as in the steady
case were imposed. One period of the jet oscillation was approximately equal to
the time interval of about 26 time steps. The use of smaller time step than 200
did not alter the results of the unsteady computation. However, when we tried
more than twice larger time steps than 200, the oscillatory pattern of velocity
profiles became distorted.

Results and disussions
Steady case
Determination of the computational domain is a non-trivial issue when the
physical flow domain is unbounded. To decide an adequate size of the
computational domain, we carried out preliminary computations for various
domain sizes. Figure 4 compares the entrainment velocity profile variations
along the vertical line off the jet exit, depending on the size of the computational
domain. Gilbert (1988) found that the entrainment velocity was 0.097 times the
mean exit velocity. As seen in Figure 4, we found that the 70 × 70cm2

computational domain should be satisfactory. A simple rectangular grid system
with appropriate stretching was used in this computation. The grid system was
clustered in the regions of wall jet and outwash jet, the smallest grid size being
0.1 × 0.48 cm2. To examine the grid dependency of the solution, computations
were performed on four different grid systems (107 × 121, 94 × 109, 83 × 92, 
66 × 77). A result of this test is illustrated in Figure 5, which demonstrates that
the 94 × 109 grid is sufficient for the present computation. The grid dependency
and the computational domain size tests were carried out using the k-ε model.

The accuracy of prediction in the upwash region is expected to be affected by
the predicted behavior of the wall jet development and collision. As pointed out
by Haung and MacInnes (1988), the wall jet growth rates predicted by the
various turbulence models were in good agreement with experimental data.
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Figure 5.
Jet half-width
distribution for various
grid densities
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Figure 6 compares the axial velocity parallel to the wall, Uw, at the fixed height
of Yw/Dw = 0.5 line. It is clearly seen that the velocity profile computed with the
Reynolds stress model is in much better agreement with the Gilbert’s
experimental data. Because of the enforced symmetry condition, Uw velocity
predicted at the symmetric plane is zero. We note, however, that the
experimental value is somewhat different from zero at the line of symmetry. The
experimental value is read to be about 0.2 times the mean exit velocity. The non-
zero mean velocity at the line of symmetry was perhaps caused either by a
slight asymmetry of the experimental setup or by the ambiguity of the hot-wire
measurement at very low velocity. As will be shown later, minor discrepancies
among the velocity profiles both in the wall jet and in the upwash jet region
caused by the different choice of the turbulence models are not essentially
related to the spreading rate of the upwash jet.

To examine the effect of turbulence models on the spreading rate of the
upwash jet, we tried three different two-equation turbulence models: the
standard k-ε model, the RNG k-ε model, and the Bardina’s model. Figures 7 and
8 show, respectively, the jet centerline velocity decay, represented by the
distribution of the maximum axial velocity Vm and the jet half width (B) growth
characteristics. It is seen that the jet centerline velocity profiles is overpredicted
and the jet half width is underpredicted significantly. All of these three models
exhibit similar behavior. The results depicted in these figures clearly indicate
that the minor model variations in the two-equation level can not account for the
large spreading rate of the upwash jet. Although the spreading rate and hence

Figure 6.
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Figure 8.
Jet half-width
distribution of the
upwash jet (k-ε model)
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Figure 7.
Velocity decay curve of
the upwash jet (k-ε
model; Vm = jet
centerline velocity; Uj =
jet exit velocity at the
nozzle)
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the velocity decay characteristic evaluated from computational results are far
from being agreeable to the experimental data, the dimensionless velocity
profiles, if non-dimensionalized as is normally done to describe jet flows, are
found to be in excellent agreement with the experimental data. Owing to the self
preserving nature of the free jet flow, the agreement with the experimental data
is expected at a location far downstream where the upwash jet flow
development becomes approximately self-preserving. This is illustrated in
Figure 9, where the dimensionless profiles at the two downstream
locations(Y/Dw = 20, 40) are given. In the figures of the top row, the velocity and
the distance are normalized respectively by the jet exit velocity and the nozzle
height. The discrepancy between the predictions and the experimental data is
clearly noted. However, if the same data are replotted via the normalization with
the jet centerline velocity (Vm) and the jet half-width (B), we see an excellent
agreement with the experimental data as depicted in the figures of the bottom
row. We comment here that the experimental data given in Figure 8 are the data
that could only be selected with confidence from the published work of Gilbert
(1988), where the data taken at various downstream stations were overlaid. The
trends observed in the results discussed above still hold in the computational
results obtained using the Reynolds stress transport model.

Figure 9.
Comparison of

dimensionless axial
velocity profiles:

(a) V/Uj at Y/Dw = 20;
(b) V/Uj at Y/Dw = 40;

(c) V/Vm at Y/Dw = 20;
(d) V/Vm at Y/Dw = 40
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Figures 10 and 11 show the computed results using the Reynolds stress models
with diffusion term model variations (DH, HL, MH, HL + KC). Although the
closure models vary considerably, the results show rather poor agreement with

Figure 11.
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Figure 10.
Velocity decay curve of
the upwash jet
(Reynolds stress model;
Vm = jet centerline
velocity; Uj = jet exit
velocity at the nozzle)
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the experimental data. In the present work, all the turbulence models employed
predicted a spreading rate of the upwash jet more or less equal to the ordinary
plane jet. Considering the fact that the currently available turbulence models
failed to predict successfully the very large spreading rate of the upwash jet, the
problem may better be tackled with a new viewpoint other than the turbulence
model studies. Obviously, an alternative way is to take the unsteadiness of the
flow into account.

Unsteady case
Results from the steady computation led us to believe that the rapid growth rate
of the upwash jet must be associated with a large-scale oscillatory behavior of
the flow. To be rigorous, such flows should be computed via either large eddy
simulation or direct numerical simulation. However, these approaches require
enormous computational resources and effort since the calculation should
proceed with the full three-dimensional unsteady Navier-Stokes equations and
the very dense grid and short time step to resolve the turbulence scales
sufficiently. An alternative engineering approach is to adopt the turbulence
model equation assuming that the large-scale motion is decoupled with the
random turbulent motion of the flow. We adopt this procedure in the present
work. Typical turbulent time scale of the present steady jet is of order 0.01sec.
On the contrary, the oscillatory time scale is of order 1 sec. Thus, the ratio of the
time scales is approximately 100. Hence, we conjecture that the turbulence
characteristic is decoupled with the oscillatory behavior. We employ the
unsteady version of the standard k-ε model of Kato and Launder (1993) as used
in their calculation of the turbulent wake behind a square rod. For the unsteady
version, they modified the kinetic energy production term, G, as follows:

(27)

(28)

As mentioned previously, the convective boundary condition is employed for
the outflow boundary. The converged steady solution is used as the initial data.
To examine the dependency of the unsteady behavior of the jet on the outflow
boundary position, we tried an 80 × 80cm2 grid system. We found that the jet
oscillation was not essentially influenced. The amplitude of U velocity
oscillation (Figure 12) at Y/Dw = 40, however, was increased by 2 per cent. We
thus concluded that the 70 × 70cm2 grid system should also be satisfactory for
the present unsteady computation.

The U velocity (transverse velocity) at the two locations (Y/Dw = 20, 40) on
the centerline is shown as a time series in Figure 12. A time scale based on the
jet exit velocity and the jet nozzle height can be defined as Dw/Uj, which is
1.4925 × 10–4sec for the present case. Another time scale based on the two-
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dimensional jet exit momentum flux ( J = DwUj
2) and the half of nozzle to nozzle

distance(2Ln) can also be used, which is Ln
3/2/J1/2 = 4.063 × 10–2sec. The

nondimensional period of oscillation at Y/Dw = 40 (see Figure 12) was about
13.67, and the corresponding Strouhal number (St = f Ln

3/2/J1/2) was 0.073. The
period oscillation corresponded to 0.555sec.

The unsteady nature of the V velocity (axial velocity) for one period along
the Y/Dw = 40 line is shown in Figure 13. We clearly see the periodic swing of
almost the same velocity profile in transverse direction. The frequency of
oscillation is slightly less than 2 Hz. The oscillation of the jet obviously results
in a larger jet width in a time averaged sense. The time-averaged velocity profile
for a period at Y/Dw=40 is shown in Figure 14. We clearly see that the jet
centerline velocity is decreased and the jet half width is increased, which brings
the predicted results closer to the experimental data.

The jet half width distribution obtained by the time averaging of the periodic
velocity profile is shown in Figure 15. The spreading rate was estimated to be
0.18, in contrast to the spreading rate of 0.10 for the case of the steady
computation. This clearly indicates that the unsteady computation significantly
improved the prediction of the upwash jet flow characteristics.

Conclusion
Computation of the upwash jet evolving from two opposing wall jets was
performed by using both the steady and the unsteady computational

Figure 12.
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Figure 13.
Axial velocity
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Figure 14.
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approaches. From the steady computational results, we found that all the
turbulence models employed in the present work did not predict satisfactorily
the flow characteristics of the upwash jet. The unsteady computation with the
k-ε model resulted in a periodically oscillating flow. The spreading rate
estimated from the time-averaged velocity profile was found to be in much
better agreement with the experimental data. Comparison of the velocity
profiles led us to believe that the present approach successfully mimicked the
oscillatory behavior of the upwash jet.
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